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Why we need uncertainty estimate

Do we have big data?

• 1K datapoints of 10 dimensions vs 1K datapoints of 1K intrinsic dimensions

• 1K datapoints for an NN with 10K parameters vs 1B parameters

Do we have perfect model?

• training data distribution = test data distribution?

• Even so, can we get 100% accuracy with 100% confidence?

• error in labels/supervision signals?
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Type of uncertainty

Imagine flipping a coin:

• Epistemic uncertainty: “How much do I believe the coin is fair?”

• Population statistics

• Reduces when having more data

• Aleatoric uncertainty: “What’s the next coin flip outcome?”

• Individual experiment outcome

• Non-reducible

• Distribution shift: “Am I still flipping the same coin?”
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Bayesian neural networks 101

Let’s say we want to classify different types of cats

• x : input images; y : output label

• build a neural network (with param. W ):

p(y |x ,W ) = softmax(fW (x))

"cat"

A Bayesian solution:

Put a prior distribution p(W ) over W

• compute posterior p(W |D) given a dataset D = {(xn, yn)}Nn=1:

p(W |D) ∝ p(W )
N∏

n=1

p(yn|xn,W )

• Bayesian predictive inference:

p(y∗|x∗,D) = Ep(W |D)[p(y∗|x∗,W )]
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Bayesian neural networks 101

Let’s say we want to classify different types of cats

• x : input images; y : output label

• build a neural network (with param. W ):

p(y |x ,W ) = softmax(fW (x))

"cat"

In practice: p(W |D) is intractable

• First find approximation q(W ) ≈ p(W |D) (e.g. via VI or MCMC)

• In prediction, do Monte Carlo sampling:

p(y∗|x∗,D) ≈ 1

K

K∑
k=1

p(y∗|x∗,W k), W k ∼ q(W )
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Empirical evaluations

“Model prediction with 70% confidence should be correct 70% of the time”

• Existing metrics (ECE, calibration improvement, etc.) for evaluating total uncertainty

• Aleatoric uncertainty evaluation needs multi expert labels

• Evaluating epistemic uncertainty is much harder

• qualitatively: low near data, high far away

Jungo and Reyes MICCAI 2019, Hu et al. MICCAI 2019
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When do we need epistemic uncertainty...

Tasks that require beliefs in acquired knowledge from data:

• Active learning/Bayesian optimisation

• next datapoint to acquire for better model knowledge

• Reinforcement learning

• exploration vs exploitation

• Continual learning

• learning future tasks vs remembering previous tasks
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Issues of weight-space inference

(a) weight space view (b) function space view

• Hard to specify prior (except for sparsity requirement)

• Symmetric modes in weight posterior

• Quality of uncertainty estimates in function space?

• sample W ∼ q(W )⇔ sample f (·) ∼ qBNN(f |D)

• q(W ) needs to be simple for computational efficiency

• ⇒ quality of qBNN(f |D) can be less satisfactory
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“In-between” uncertainty

“In-between” uncertainty:

uncertainty estimates in regions between data clusters

• Missing values (especially in time series)

• Ambiguous inputs
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“In-between” uncertainty

Theorem (mean-field Gaussian, epistemic)

For a one-hidden layer BNN with ReLU activation, any Gaussian mean-field distribution on

weights q(W ) =
∏

ij N (Wij ;µij , σ
2
ij), and any hyper-cube C that contains 0:

The value of the variance function V[f (x)] at any x ∈ C is bounded by the variance function

values at the vertices of C .

Foong et al. NeurIPS 2019 Bayesian deep learning workshop 8



“In-between” uncertainty

Intuition behind the theory:

• To fit the data, σij of q(Wij) needs to be relatively small

• For ReLU(wx + b), w controls slope, b controls intercept

• “In-between” epistemic uncertainty requires correlations in W

Foong et al. NeurIPS 2019 Bayesian deep learning workshop
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“In-between” uncertainty

Theorem (MC-dropout for hidden units, epistemic)

For a one-hidden layer BNN with ReLU activation, any dropout rate, and any set of input

points S where its convex hull contains 0:

The value of the variance function V[f (0)] is bounded by the variance function values at the

points in S.

Foong et al. NeurIPS 2019 Bayesian deep learning workshop 10



“In-between” uncertainty

Foong et al. NeurIPS 2019 Bayesian deep learning workshop
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“In-between” uncertainty

“Should I worry about this result when I’m using deeper BNNs?”

• Two-layer cases: ∃ mean-field Gaussian q̃(W ) s.t. (epistemic)

variance function shows good “in-between” uncertainty

• Can BNN training methods find it?

Foong et al. NeurIPS 2019 Bayesian deep learning workshop
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“In-between” uncertainty

“Should I worry about this result when I’m using deeper BNNs?”

• Aleatoric uncertainty can still be high:

e.g. q(W ) ≈ δ(W0) and softmax(fW0 (x)) is flat

• Classification/segmentation tasks require heteroskedastic aleatoric uncertainty

⇒ need more datapoints and/or multi expert labels for good estimation

• Epistemic uncertainty in decision boundary still needed
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Function space inference

Radford Neal’s derivation:

• BNN with mean-field prior → Gaussian process (GP) prior

GPSS 2019 BNN tutorial, http://gpss.cc/gpss19/program
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Function space inference

Recent extensions of Radford Neal’s result:

• deep and wide BNNs with mean-field prior → GP prior

• Neural Tangent Kernel (NTK): for very wide NNs

• NN regression ≈ kernel regression, in gradient descent dynamics

• Laplace/variational Gaussian BNNs ≈ GP posterior with NTK

Matthews et al. 2018, Lee et al. 2018, Garriga-Alonso et al. 2019, Novak et al. 2019, Jacot et al. 2018, Khan et al. 2019
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Function space inference
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(e) GP regression (GPR)

Variational implicit processes:

• prior over NN weights p(W )

⇔ prior over functions pBNN(f )

• pBNN(f ) implicitly defined

(intractable, unlike GPs)

• posterior approximation:

qGP(f |D) ≈ pBNN(f |D)

• Empirical Bayes:

optimise p(W )

Ma et al. ICML 2019
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What we have covered today...

Using Bayesian methods for deep learning:

• Need to compute calibration metrics

• Be careful when choosing

weight-space inference method

• Think more about uncertainty

estimation in function space
Thank you!
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